spider

ANDRIANFALZYAH.BLOGSPOT . GUE BLOG KREATIV DAN INOVATIV

Jumat, 24 Mei 2013

Cara Kerja AC dan Bagian-Bagiannya



Di era serba maju sekarang ini, kita pasti sudah sangat akrab dengan air conditioner. Kehidupan modern, apalagi di perkotaan hampir tidak bisa lepas dari pemanfaatan teknologi ini. Namun apakah banyak dari kita yang tahu bagaimana cara kerja ac sehingga bisa menghasilkan udara yang nyaman (baca: dingin) bagi kehidupan kita?

Udara dingin tersebut sebenarnya merupakan output dari sistem yang terdiri dari beberapa komponen, yaitu; 
compressor AC, kondensor, orifice tube, evaporator, katup ekspansi, dan evaporator. Berikut adalah penjelasan singkat mengenai peran masing-masing bagian tersebut:

Compressor AC

Compressor AC adalah power unit dari sistem AC. Ketika AC dijalankan, compressor AC mengubah fluida kerja/refrigent berupa gas dari yang bertekanan rendah menjadi gas yang bertekanan tinggi. Gas bertekanan tinggi kemudian diteruskan menuju kondensor.

Kondensor AC

Kondensor adalah sebuah alat yang digunakan untuk mengubah gas yang bertekanan tinggi berubah menjadi cairan yang bertekanan tinggi yang kemudian akan dialirkan ke orifice tube. Kondensor merupakan bagian yang “panas” dari air conditioner. Kondensor bisa disebut heat exchange yang bisa memindahkan panas ke udara atau ke intermediate fluid (semacam air larutan yang mengandung ethylene glycol), untuk membawa panas ke orifice tube.

Orifice Tube
Orifice tube merupakan tempat di mana cairan bertekanan tinggi diturunkan tekanan dan suhunya menjadi cairan dingin bertekanan rendah. Dalam beberapa sistem, selain memasang sebuah orifice tube, dipasang juga katup ekspansi.

Katup Ekspansi
Katup ekspansi merupakan komponen penting dalam sistem air conditioner. Katup ini dirancang untuk mengontrol aliran cairan pendingin melalui katup orifice yang merubah wujud cairan menjadi uap ketika zat pendingin meninggalkan katup pemuaian dan memasuki evaporator/pendingin.

Evaporator AC

Refrigent menyerap panas dalam ruangan melalui kumparan pendingin dan kipas evaporator meniupkan udara dingin ke dalam ruangan. Refrigent dalam evaporator mulai berubah kembali menjadi uap bertekanan rendah, tapi masih mengandung sedikit cairan. Campuran refrigent kemudian masuk ke akumulator / pengering. Ini juga dapat berlaku seperti mulut/orifice kedua bagi cairan yang berubah menjadi uap bertekanan rendah yang murni, sebelum melalui compressor AC untuk memperoleh tekanan dan beredar dalam sistem lagi. Biasanya, evaporator dipasangi silikon yang berfungsi untuk menyerap kelembapan dari refrigent.

Thermostat
Thermostat pada air conditioner beroperasi dengan menggunakan lempeng bimetal yang peka terhadap perubahan suhu ruangan. Lempeng ini terbuat dari 2 metal yang memiliki koefisien pemuaian yang berbeda. Ketika temperatur naik, metal terluar memuai lebih dahulu, sehingga lempeng membengkok dan akhirnya menyentuh sirkuit listrik yang menyebabkan motor AC aktif.
Jadi, cara kerja AC dapat dijelaskan sebagai berkut :

Compressor AC yang ada pada sistem pendingin dipergunakan sebagai alat untuk memampatkan fluida kerja (refrigent), jadi refrigent yang masuk ke dalam compressor AC dialirkan ke condenser yang kemudian dimampatkan di kondenser.

Di bagian kondenser ini refrigent yang dimampatkan akan berubah fase dari refrigent fase uap menjadi refrigent fase cair, maka refrigent mengeluarkan kalor yaitu kalor penguapan yang terkandung di dalam refrigent. Adapun besarnya kalor yang dilepaskan oleh kondenser adalah jumlahan dari energi compressor yang diperlukan dan energi kalor yang diambil evaparator dari substansi yang akan didinginkan.

Pada kondensor tekanan refrigent yang berada dalam pipa-pipa kondenser relatif jauh lebih tinggi dibandingkan dengan tekanan refrigent yang berada pada pipi-pipa evaporator.

Setelah refrigent lewat kondenser dan melepaskan kalor penguapan dari fase uap ke fase cair maka refrigent dilewatkan melalui katup ekspansi, pada katup ekspansi ini refrigent tekanannya diturunkan sehingga refrigent berubah kondisi dari fase cair ke fase uap yang kemudian dialirkan ke evaporator, di dalam evaporator ini refrigent akan berubah keadaannya dari fase cair ke fase uap, perubahan fase ini disebabkan karena tekanan refrigent dibuat sedemikian rupa sehingga refrigent setelah melewati katup ekspansi dan melalui evaporator tekanannya menjadi sangat turun.

Hal ini secara praktis dapat dilakukan dengan jalan diameter pipa yang ada dievaporator relatif lebih besar jika dibandingkan dengan diameter pipa yang ada pada kondenser.
Dengan adanya perubahan kondisi refrigent dari fase cair ke fase uap maka untuk merubahnya dari fase cair ke refrigent fase uap maka proses ini membutuhkan energi yaitu energi penguapan, dalam hal ini energi yang dipergunakan adalah energi yang berada di dalam substansi yang akan didinginkan.

Dengan diambilnya energi yang diambil dalam substansi yang akan didinginkan maka enthalpi [*] substansi yang akan didinginkan akan menjadi turun, dengan turunnya enthalpi maka temperatur dari substansi yang akan didinginkan akan menjadi turun. Proses ini akan berubah terus-menerus sampai terjadi pendinginan yang sesuai dengan keinginan. Dengan adanya mesin pendingin listrik ini maka untuk mendinginkan atau menurunkan temperatur suatu substansi dapat dengan mudah dilakukan.
Perlu diketahui :
Kunci utama dari air conditioner adalah refrigerant, yang umumnya adalah fluorocarbon [**], yang mengalir dalam sistem, menjadi cairan dan melepaskan panas saat dipompa (diberi tekanan), dan menjadi gas dan menyerap panas ketika tekanan dikurangi. Mekanisme berubahnya refrigerant menjadi cairan lalu gas dengan memberi atau mengurangi tekanan terbagi mejadi dua area: sebuah penyaring udara, kipas, dan cooling coil (kumparan pendingin) yang ada pada sisi ruangan dan sebuah compressor (pompa), condenser coil (kumparan penukar panas), dan kipas pada jendela luar.

Udara panas dari ruangan melewati filter, menuju ke cooling coil yang berisi cairan refrigerant yang dingin, sehingga udara menjadi dingin, lalu melalui teralis/kisi-kisi kembali ke dalam ruangan. Pada compressor AC, gas refrigerant dari cooling coil lalu dipanaskan dengan cara pengompresan. Pada condenser coil, refrigerant melepaskan panas dan menjadi cairan, yang tersirkulasi kembali ke cooling coil. Sebuah thermostat AC [***] mengontrol motor compressor AC untuk mengatur suhu ruangan.

[*] Entalphi adalah istilah dalam termodinamika yang menyatakan jumlah energi internal dari suatu sistem termodinamika ditambah energi yang digunakan untuk melakukan kerja.

[**] Fluorocarbon adalah senyawa organik yang mengandung 1 atau lebih atom Fluorine. Lebih dari 100 fluorocarbon yang telah ditemukan. Kelompok Freon dari fluorocarbon terdiri dari Freon-11 (CCl3F) yang digunakan sebagai bahan aerosol, dan Freon-12 (CCl2F2), umumnya digunakan sebagai bahan refrigerant. Saat ini, freon AC dianggap sebagai salah satu penyebab lapisan Ozon Bumi menajdi lubang dan menyebabkan sinar UV masuk. Walaupun, hal tersebut belum terbukti sepenuhnya, produksi fluorocarbon mulai dikurangi.

[***] Thermostat pada air conditioner beroperasi dengan menggunakan lempeng bimetal yang peka terhadap perubahan suhu ruangan. Lempeng ini terbuat dari 2 metal yang memiliki koefisien pemuaian yang berbeda. Ketika temperatur naik, metal terluar memuai lebih dahulu, sehingga lempeng membengkok dan akhirnya menyentuh sirkuit listrik yang menyebabkan motor AC aktif/jalan.

PENTING:
Penambahan refrigerant atau Freon AC hanya diperlukan untuk mengganti volume Freon yang hilang akibat kebocoran. Selama unit AC tidak mengalami kebocoran, Anda tidak akan perlu untuk mengisi refrigerant/Freon pada saat melakukan service AC.

KONSEP RANGKAIAN LISTRIK





Definisi - Definisi
Rangkaian listrik adalah suatu kumpulan elemen atau komponen listrik yang saling
dihubungkan dengan cara-cara tertentu dan paling sedikit mempunyai satu lintasan
tertutup.
Elemen atau komponen yang akan dibahas pada mata kuliah Rangkaian Listrik terbatas
pada elemen atau komponen yang memiliki dua buah terminal atau kutub pada kedua
ujungnya. Untuk elemen atau komponen yang lebih dari dua terminal dibahas pada mata
kuliah Elektronika.
Pembatasan elemen atau komponen listrik pada Rangkaian Listrik dapat dikelompokkan
kedalam elemen atau komponen aktif dan pasif. Elemen aktif adalah elemen yang
menghasilkan energi dalam hal ini adalah sumber tegangan dan sumber arus, mengenai
sumber ini akan dijelaskan pada bab berikutnya. Elemen lain adalah elemen pasif
dimana elemen ini tidak dapat menghasilkan energi, dapat dikelompokkan menjadi
elemen yang hanya dapat menyerap energi dalam hal ini hanya terdapat pada komponen
resistor atau banyak juga yang menyebutkan tahanan atau hambatan dengan simbol R,
dan komponen pasif yang dapat menyimpan energi juga diklasifikasikan menjadi dua
yaitu komponen atau lemen yang menyerap energi dalam bentuk medan magnet dalam
hal ini induktor atau sering juga disebut sebagai lilitan, belitan atau kumparan dengan
simbol L, dan kompone pasif yang menyerap energi dalam bentuk medan magnet dalam
hal ini adalah kapasitor atau sering juga dikatakan dengan kondensator dengan simbol
C, pembahasan mengenai ketiga komponen pasif tersebut nantinya akan dijelaskan pada
bab berikutnya.
Elemen atau kompoen listrik yang dibicarakan disini adalah :
1. Elemen listrik dua terminal
a. Sumber tegangan
b. Sumber arus
c. Resistor ( R )
d. Induktor ( L )
e. Kapasitor ( C )
2. Elemen listrik lebih dari dua terminal
a. Transistor
b. Op-amp
Berbicara mengenai Rangkaian Listrik, tentu tidak dapat dilepaskan dari pengertian dari
rangkaian itu sendiri, dimana rangkaian adalah interkoneksi dari sekumpulan elemen
atau komponen penyusunnya ditambah dengan rangkaian penghubungnya dimana
disusun dengan cara-cara tertentu dan minimal memiliki satu lintasan tertutup. Dengan
kata lain hanya dengan satu lintasan tertutup saja kita dapat menganalisis suatu
rangkaian.
Yang dimaksud dengan satu lintasan tertutup adalah satu lintasan saat kita mulai dari
titik yang dimaksud akan kembali lagi ketitik tersebut tanpa terputus dan tidak
memandang seberapa jauh atau dekat lintasan yang kita tempuh.
Rangkaian listrik merupakan dasar dari teori rangkaian pada teknik elektro yang
menjadi dasar atay fundamental bagi ilmu-ilmu lainnya seperti elektronika, sistem daya,
sistem computer, putaran mesin, dan teori control.

Arus Listrik
Pada pembahasan tentang rangkaian listrik, perlu kiranya kita mengetahui terlebih
dahulu beberapa hal megenai apa itu yang dimaksud dengan listrik. Untuk memahami
tentang listrik, perlu kita ketahui terlebih dahulu pengertian dari arus.
Arus merupakan perubahan kecepatan muatan terhadap waktu atau muatan yang
mengalir dalam satuan waktu dengan simbol i (dari kata Perancis : intensite), dengan
kata lain arus adalah muatan yang bergerak. Selama muatan tersebut bergerak maka
akan muncul arus tetapi ketika muatan tersebut diam maka arus pun akan hilang.
Muatan akan bergerak jika ada energi luar yang memepengaruhinya. Muatan adalah
satuan terkecil dari atom atau sub bagian dari atom. Dimana dalam teori atom modern
menyatakan atom terdiri dari partikel inti (proton bermuatan + dan neutron bersifat
netral) yang dikelilingi oleh muatan elektron (-), normalnya atom bermuatan netral.
Muatan terdiri dari dua jenis yaitu muatan positif dan muatan negatif
Arah arus searah dengan arah muatan positif (arah arus listrik) atau berlawanan dengan
arah aliran elektron. Suatu partikel dapat menjadi muatan positif apabila kehilangan
elektron dan menjadi muatan negatif apabila menerima elektron dari partikel lain.
Coulomb adalah unit dasar dari International System of Units (SI) yang digunakan
untuk mengukur muatan listrik.
Simbol : Q = muatan konstan
q = muatan tergantung satuan waktu
muatan 1 elektron = -1,6021 x 10-19 coulomb
1 coulomb = -6,24 x 1018 elektron
Secara matematis arus didefinisikan :
dt
i = dq
Satuannya : Ampere (A)
Dalam teori rangkaian arus merupakan pergerakan muatan positif. Ketika terjadi beda
potensial disuatu elemen atau komponen maka akan muncul arus dimaan arah arus
positif mengalir dari potensial tinggi ke potensial rendah dan arah arus negatif mengalir
sebaliknya.
Macam-macam arus :
1. Arus searah (Direct Current/DC)
Arus DC adalah arus yang mempunyai nilai tetap atau konstan terhadap satuan
waktu, artinya diaman pun kita meninjau arus tersebut pada wakttu berbeda akan
mendapatkan nilai yang sama

2. Arus bolak-balik (Alternating Current/AC)
Arus AC adalah arus yang mempunyai nilai yang berubah terhadap satuan waktu
dengan karakteristik akan selalu berulang untuk perioda waktu tertentu
(mempunyai perida waktu : T).
Tegangan
Tegangan atau seringkali orang menyebut dengan beda potensial dalam bahasa Inggris
voltage adalah kerja yang dilakukan untuk menggerakkan satu muatan (sebesar satu
coulomb) pada elemen atau komponen dari satu terminal/kutub ke terminal/kutub
lainnya, atau pada kedua terminal/kutub akan mempunyai beda potensial jika kita
menggerakkan/memindahkan muatan sebesar satu coulomb dari satu terminal ke
terminal lainnya.
Keterkaitan antara kerja yang dilakukan sebenarnya adalah energi yang dikeluarkan,
sehingga pengertian diatas dapat dipersingkat bahwa tegangan adalah energi per satuan
muatan.
Secara matematis :
dq
v = dw
Satuannya : Volt (V)
Pada gambar diatas, jika terminal/kutub A mempunyai potensial lebih tinggi daripada
potensial di terminal/kutub B. Maka ada dua istilah yang seringkali dipakai pada
Rangkaian Listrik, yaitu :
1. Tegangan turun/ voltage drop
Jika dipandang dari potensial lebih tinggi ke potensial lebih rendah dalam hal ini
dari terminal A ke terminal B.
2. Tegangan naik/ voltage rise
Jika dipandang dari potensial lebih rendah ke potensial lebih tinggi dalam hal ini
dari terminal B ke terminal A.
Pada buku ini istilah yang akan dipakai adalah pengertian pada item nomor 1 yaitu
tegangan turun. Maka jika beda potensial antara kedua titik tersebut adalah sebesar 5
Volt, maka VAB = 5 Volt dan VBA = -5 Volt

Energi
Kerja yang dilakukan oleh gaya sebesar satu Newton sejauh satu meter. Jadi energi
adalah sesuatu kerja dimana kita memindahkan sesuatu dengan mengeluarkan gaya
sebesar satu Newton dengan jarak tempuh atau sesuatu tersebut berpindah dengan
selisih jarak satu meter.
Pada alam akan berlaku hukum Kekekalan Energi dimana energi sebetulnya tidak dapat
dihasilkan dan tidak dapat dihilangkan, energi hanya berpindah dari satu bentuk ke
bentuk yang lainnya. Contohnya pada pembangkit listrik, energi dari air yang bergerak
akan berpindah menjadi energi yang menghasilkan energi listrik, energi listrik akan
berpindah menjadi energi cahaya jika anergi listrik tersebut melewati suatu lampu,
energi cahaya akan berpinda menjadi energi panas jika bola lampu tersebut
pemakaiannya lama, demikian seterusnya.
Untuk menyatakan apakah energi dikirim atau diserap tidak hanya polaritas tegangan
tetapi arah arus juga berpengaruh.
Elemen/komponen listrik digolongkan menjadi :
1. Menyerap energi
Jika arus positif meninggalkan terminal positif menuju terminal
elemen/komponen, atau arus positif menuju terminal positif elemen/komponen
tersebut.
2. Mengirim energi
Jika arus positif masuk terminal positif dari terminal elemen/komponen, atau
arus positif meninggalkan terminal positif elemen/komponen.
Energi yang diserap/dikirim pada suatu elemen yang bertegangan v dan muatan yang
melewatinya Δq adalah Δw = vΔq
Satuannya : Joule (J)

Daya
Rata-rata kerja yang dilakukan
Daya secara matematis : vi
dt
dq
dq
dw
dq
P = dw = =
Satuannya : Watt (W)
Analisis Rangkaian
Mencari hubungan antara masukan dan keluaran pada rangkaian yang telah diketahui,
misalkan mencari keluaran tegangan/ arus ataupun menentukan energi/ daya yang
dikirim.
Ada 2 cabang utama dari teori rangkaian (input, rangkaian, output) :
1. Analisa rangkaian (rangkaian dan input untuk mencari output)
2. Sintesa rangkaian/ desain (input dan output untuk mencari rangkaian)
Prefix dalam SI (Sistem satuan Internasional)
Dalam SI untuk menyatakan bilangan yang lebih besar atau lebih kecil dari satu satuan
dasar, dipergunakan notasi desimal (“standard decimal prefixes”) yang menyatakan
pangkat dari sepuluh.
Notasi lengkap Singkatan Artinya (terhadap satuan)
atto a 10-18
femto f 10-15
pico p 10-12
nano n 10-9
mikro μ 10-6
milli m 10-3
centi c 10-2
deci d 10-1
deka da 101
hekto h 102
kilo k 103
mega M 106
giga G 109
tera T 1012

Contoh latihan :
1. Jika arus 6 A, tentukan v jika elemen menyerap daya 18 W ?
Jawaban :
Menyerap daya jika arus positif meninggalkan terminal positif
Arus positif karena dari potensial tinggi ke potensial rendah
i = 6 A
P = 18 W
3
6
= = 18 =
i
v P Volt
2. Jika arus 6 A, tentukan v jika elemen mengirimkan daya 18 W ?
Jawaban :
Mengirimkan daya jika arus positif masuk terminal positif


Arus negatif karena dari potensial rendah ke potensial tinggi
i = - 6 A
P = 18 W
3
6
18 = −

= =
i
v P Volt
3. Tentukan daya pada rangkaian tersebut, apakah sumber tegangan mengirimkan atau
menyerap daya !
Jawaban :
Arus positif karena dari potensial tinggi ke potensial rendah
i = 3 A
v = 6 V
p = vi = 3.6 = 18 W
Arus positif meninggalkan terminal positif sumber, sehingga sumber mengirimkan
daya.

Sabtu, 18 Mei 2013

Refrigerant Pressure Gauge



Refrigerant Pressure Gauge
Ada dua jenis pressure gauge, yaitu:
1. Pressure gauge teknikal (technical pressure gauge)
2. Pressure gauge mutlak (absolute pressure gauge)
Cara membedakan pressure gauge teknikal dan pressure gauge mutlak sangat mudah, yaitu:
Secara sederhananya apabila koneksi pressure gauge terbuka ke atmosfir dan menunjukkan nilai “0” maka gauge ini adalah jenis pressure gauge teknikal tetapi apabila menunjukkan nilai “1.013 bar / 14.7 psi” maka gauge ini adalah jenis pressure gauge mutlak.
Catatan: tekanan atmosfir bervariasi tergantung dimana kita melakukan pengukuran,. Tekanan 1.013 bar / 14.7 psi didapat jika pengukuran dilakukan di titik 0 meter dpl.
Jadi:
Tekanan mutlak = tekanan teknikal + tekanan atmosfir
Pressure Gauge standard untuk sistem pendingin selain terdapat skala tekanan, juga terdapat skala temperatur-nya. Yaitu hubungan antara tekanan dengan temperatur-nya.
Pada umumnya kita mengetahui bahwa titik didih air adalah 100 °C. Tetapi sebenarnya air juga bisa mendidih pada temperatur 25 °C atau pada titik temperatur yg lainnya mis. 45 °C.
Jadi titik didih air yg 100 °C itu adalah ketika tekanan yg bekerja pada air sebesar 1 atmosfir. Jika tekanan kita buat menjadi 2 atmosfir misalnya, maka air akan mulai mendidih pada temperatur yg lebih tinggi, yaitu 120 °C. Begitu juga sebaliknya apabila tekanan yg bekerja pada air tersebut dibawah 1 atmosfir maka titik didih air akan dibawah 100 °C.
Jadi titik didih suatu zat akan dipengaruhi oleh besarnya tekanan yg bekerja pada zat tersebut.
Air adalah refrigerant juga. Dalam sistem pendingin, air dipakai sebagai refrigerant tingkat kedua (secondary refrigerant). Biasanya digunakan pada Chiller system.
Seperti halnya refrigerant yg lebih umum dikenal seperti R-22, R134a, R404A atau yg lainnya, air juga memiliki kode refrigeran yaitu R-718.
Pressure gauge seperti gambar diatas adalah Pressure Gauge standard untuk sistem pendingin.
Dalam beberapa pressure gauge sering dimasukkan juga sejenis cairan yaitu glycerine yang berfungsi untuk meredam getaran jarum penunjuk, sehingga pembacaan bisa lebih stabil

Perawatan Korektif (Corrective Maintenance)




Perawatan korektif atau Corrective Maintenance (selanjutnya akan disebut “CM” dalam tulisan ini) merupakan tindakan perawatan untuk mengembalikan fungsi sebuah peralatan produksi yang mengalami kerusakan, baik ringan, sedang maupun parah, agar bisa melakukan fungsinya dalam mendukung proses produksi dalam sebuah plant atau pabrik. CM juga ada yang menyebutnya dengan istilah repair atau service. Pengertian versi wikipedia bisa diklik di sini.  Dalam dunia instrumentasi, contoh CM adalah pembersihan bore control valve karena tersumbat (plugging) dan lain-lain.
Contoh CM di rumah adalah jika mesin pompa air kita bocor, maka kita usahakan untuk menambalnya sebisa kita, misalnya dengan liquid gasket.
CM di plant/pabrik ada kalanya berbeda dengan CM untuk peralatan rumah tangga semisal mesin pompa air tadi.
Contoh: Kembali ke contoh di atas, misalnya pompa air kita mengalami kebocoran, maka sebisanya kita menambal kebocoran tersebut, karena kita berpikir itu adalah masalah yang bisa kita atasi tanpa perlu mengganti keseluruhan mesin pompa air. Andai kata kebocoran terjadi lagi, maka kitapun menambalnya kembali. Dan mengganti keseluruhan poma menjadi alternatif terakhir.
Pendekatan seperti contoh di atas adakalanya tidak bis kita terapkan di plant/pabrik dimana kita bekerja, bahkan untuk kasus tertentu, dinyatakan tidak boleh. Karena adanya tuntutan (demand) dan resiko (risk) yang berbeda dengan keadaan di rumah.
Plant memerlukan:
  1. Safety, baik untuk manusia, peralatan maupun lingkungan.
  2. Reliability, yaitu kehandalan yang harus dimiliki oleh peralatan.
  3. Availability, yaitu kesiapan peralatan agar selalu ada dalam keadaan siap pakai.
Berdasarkan keperluan di atas, pada kasus tertentu, perbaikan atau modifikasi terhadap sebuah peralatan tidak boleh dilakukan di plant. Kalaupun dilakukan CM, perbaikan atau modifikasi, maka harus dilakukan oleh vendor yang bersertifikat.
Contohnya adalah Antisurge Control Valve pada aplikasi kompresor, misalnya mengalami kebocoran pada packing set, memang dengan relatif mudah bisa kita (teknisi) lakukan, tetapi melihat pentingnya anti surge control valve baik sebagai fungsi control maupun sebagai fungsi safety, hal itu tidak boleh kita lakukan karena antisurge valve tersebut selain sebagai fungsi capacity control untuk kasus tertentu, juga sebagai fungsi safety untuk melindungi kompresor dari kerusakan mekanis yang lebih parah.
Jadi, walaupun kita bisa memperbaiki antisurge valve tersebut, jika terjadi kegagalan dan mengakibatkan kerusakan mekanis yang parah pada kompresor, bukan penghematan yang kita (perusahaan kita) dapatkan, tetapi perbaikan besar pada kompresor. Selain itu, ada faktor akuntabilitas dari pekerjaan tersebut, karena kita (teknisi) tidak bersertifikat untuk melakukan hal itu, paling tidak dari sudut pandang vendor kompresornya, dan urusannya akan panjang ke isu garansi dan sebagainya.
Pada kasus di atas, penggantian antisurge valve secara keseluruhan lebih diutamakan dan diharuskan dibanding dengan kita memperbaikinya sendiri. Karena penggantian sebuah antisurge valve yang “hanya” beberapa ratus ribu dolar tidak akan sebanding dengan biaya biaya perbaikan kompresor yang beratur-ratus ribu dolar, belum lagi Lost Production Opportunity yang membengkak sampai jutaan dolar.
Akan tetapi, jika kita menghadapi kerusakan pada sistem yang tidak begitu kritikal, boleh saja kita lakukan perbaikan sendiri, semisal mengganti packing set pada control valve tadi, yang diaplikasikan pada sistem yang tidak begitu krusial.
Jadi sebagai teknisi, kita jangan terlalu tergiur dengan kemudahan sebuah pekerjaan. Yang harus kita prioritaskan adalah mengetahui seberaba besar resiko yang akan timbul jika peralatan mengalami malfunction (gagal fungsi) baik dari sisi safety, reliability maupun availability. Sehingga mengganti keseluruhan sebuah peralatan patut dipertimbangkan dibanding dengan memperbaikinya.

Pngertian ukuran PK (HORSE POWER) pada AC


Untuk mengetahui kompresor 1 PK (atau lainnya), secara fisik agak susah, harus banyak pengalaman. Biasanya hal ini tidak bisa diajarkan secara teori. Saya sendiripun sulit membedakan yang 1/3 PK atau 1/2 PK. Akan tetapi, bila kita bisa melihat katalog, maka kita bisa tahu dari spesifikasinya. (Dengan mengetahui tipe saja, kita bisa mencari datanya di internet.)

Untuk memastikan apakah 1 PK itu 9000 Btuh atau bukan, memang kita harus mengujinya,  Biasanya pengujian berada pada kondisi tertentu (kadang ada standard-nya) sehingga kita bisa mengetahui kapasitas
kompresor tersbut.
Perlu difahami bahwa istilah PK adalah untuk menyatakan seberapa daya input kompresor/sistem tersbut, sedangkan Btuh, adalah istilah (tepatnya satuan) untuk menyatakan kapasitas pendinginan dari kompresor tersbut.
Bila ada yang menyatakan kompresor dengan PK tertentu berbeda Btuh-nya, artinya memang kompresor tersebut kinerjanya (Performance-nya) berbeda. Kadang kondisi pengujiannyapun berbeda. Kalau diminta memilih, maka cari yang Btuh/PK- nya (disebut EER atau COP) yang besar. Selain EER atau COP, perlu juga kita lihat (berdasarkan spesifikasi) jenis kompresornya, apakah untuk temperatur rendah atau untuk temperatur tinggi.
Menentukan panjang dan besar pipa condensor dan evaporator , umpamanya berapa panjang dan ukuran pipa condensor dan evaporator untuk compressor 1 pk etc
Jawab : Ini pertanyaan rada susah karena harus lebih detil, tapi saya coba jawab dengan garis besarnya saja. Karena yang diketahui adalah daya kompresornya (W) maka :
ke-1. Hitung kapasitas pendinginan (Qe), dimana Qe = EER x W
ke-2. maka dapat ditentukan Qe = UAdt, dimana U perpindahan kalor menyeluruh evaporator, A luas permukaan evaporator (bila pipa telanjang biasa maka A = 3,14 x Diameter pipa x panjang Pipa), dT beda temperatur fluida yang didinginkan dengan temperatur evaporasinya.
Dengan mengetahui U dan kondisi kerja sistem kita (tekanan evaporasi, yang menunjukkan temperatur evaporasinya, juga temperatur fluida yang didinginkan,) serta diameter pipa evaporator yang digunakan, maka kita dapat menghitung panjang evaporator.

Hal yang sama bisa kita lakukan untuk kondensor, dimana kita hitung dahulu besar kalor yang dilepas di kondensor (Qc), dimana Qc = HRF x Qe atau bisa juga digunakan Qc = (EER + 1) x W.
HRF adalah Heat rejection Factor, yaitu perbandingan kalor dilepaskan di kondensor dibandingkan dengan kalor diserap di evaporator.

Selanjutnya langka ke-2 digunakan untuk menghitung panjag kondensor.
Persoalan yang seringkali sulit adalah bagaimana menghitung U (baik untuk kondensor maupun evaporator).


=======================================================

Pembangkit Listrik Tenaga Surya (PLTS)


Tenaga Surya





Pembangkit listrik tenaga surya adalah ramah lingkungan, dan sangat menjanjikan. Sebagai salah satu alternatif untuk menggantikan pembangkit listrik menggunakan uap (dengan minyak dan batubara).
Sistem energi pembangkti tenaga surya, mengurangi ketergantungan dunia akan bahan bakar fosil, bayangkan energi gratis dan terus-menerus yang bersumber dari bumi kita disediakan untuk kebutuhan energi dan dapat dihandalkan mengurangi pengeluaran daya,
dimana terus menjadi beban dalam kehidupan rumah tangga dan keuntungan bisnis anda.
Menggunakan listrik sendiri dari tenaga surya (mandiri) apakah memungkinkan? Bukankah PLN sudah menyediakan listrik yang lumayan murah? Apakah keuntungan menggunakan listrik mandiri?
Keuntungan menggunakan listrik mandiri dengan menggunakan solar panel / panel surya:
  • Merupakan energi terbarukan yang tidak pernah habis
  • Menghemat listrik dalam jangka panjang
  • Mengurangi pemanasan global
  • Bersih dan ramah lingkungan
  • Praktis tidak memerlukan perawatan
  • Umur panel surya yang panjang
  • Tidak tergantung dengan PLN
  • Sangat cocok untuk daerah tropis seperti Indonesia
Cara Kerja Solar Power  
Cara Kerja Solar Power

Perencanaan Pembangkit Listrik Tenaga Surya
Karena pembangkit listrik tenaga surya sangat tergantung kepada sinar matahari, maka perencanaan yang baik sangat diperlukan. Perencanaan terdiri dari:
  1. Jumlah daya yang dibutuhkan dalam pemakaian sehari-hari (Watt).
  2. Berapa besar arus yang dihasilkan solar cells panel (dalam Ampere hour), dalam hal ini memperhitungkan berapa jumlah panel surya yang harus dipasang.
  3. Berapa unit baterai yang diperlukan untuk kapasitas yang diinginkan dan pertimbangan penggunaan tanpa sinar matahari. (Ampere hour).
Dalam nilai ke-ekonomian, pembangkit listrik tenaga surya memiliki nilai yang lebih tinggi, dimana listrik dari PT. PLN tidak dimungkinkan, ataupun instalasi generator listrik bensin ataupun solar.
Komponen-komponen yang diperlukan untuk instalasi listrik tenaga surya, terdiri dari:
  1. Panel surya / solar panel
    Solar panel / panel surya mengkonversikan tenaga matahari menjadi listrik. Sel silikon (disebut juga solar cells) yang disinari matahari/ surya, membuat photon yang menghasilkan arus listrik.
    Sebuah solar cells menghasilkan kurang lebih tegangan 0.5 Volt. Jadi sebuah panel surya 12 Volt terdiri dari kurang lebih 36 sel (untuk menghasilkan 17 Volt tegangan maksimum).
    Umumnya kita menghitung maksimum sinar matahari yang diubah menjadi tenaga listrik sepanjang hari adalah 5 jam. Tenaga listrik pada pagi – sore disimpan dalam baterai, sehingga listrik bisa digunakan pada malam hari, dimana tanpa sinar matahari. 
  2. Solar charge controller
    erfungsi mengatur lalu lintas dari solar cell ke baterai dan beban. Alat elektronik ini juga mempunyai banyak fungsi yang pada dasarnya ditujukan untuk melindungi baterai. 
  3. Inverter
    Inverter dalah perangkat elektrik yang mengkonversikan tegangan searah (DC – direct current) menjadi tegangan bolak balik (AC – alternating current).
  4. Baterai berfungsi menyimpan arus listrik yang dihasilkan oleh panel surya sebelum dimanfaatkan untuk menggerakkan beban. Beban dapat berupa lampu penerangan atau peralatan elektronik lainnya yang membutuhkan listrik.
Instalasi pembangkit listrik dengan tenaga surya membutuhkan perencanaan mengenai kebutuhan daya:
  • Jumlah pemakaian
  • Jumlah solar panel
  • Jumlah baterai
Lampu LED sebagai Penerangan Rumah
Saat ini sudah ada lampu hemat energi yang menggunakan DC seperti lampu LED. Bandingkan lampu LED 3 Watt setara dengan Lampu AC 15 Watt.
Kekurangannya adalah:
  • Instalasi kabel baru untuk lampu LED
  • Biaya pengadaan lampu yang lebih mahal.
Keuntungannya adalah:
  • Penggunaan energi yang kecil
  • Keandalan lampu LED 10 x lampu standard biasa
  • Penggunaan kabel listrik 2 inti.
Lampu ACLampu LED
Voltage220 VAC12 VDC
Watt15 Watt3 Watt
Lifetime6,000 jam50,000 jam
Harga± Rp. 25,000± Rp. 115,000

Perhitungan Pembangkit Listrik Tenaga Surya
Perhitungan keperluan daya (perhitungan daya listrik perangkat dapat dilihat pada label di belakang perangkat, ataupun dibaca dari manual):
Penerangan rumah: 10 lampu CFL @ 15 Watt x 4 jam sehari = 600 Watt hour.
  • Televisi 21″: @ 100 Watt x 5 jam sehari = 500 Watt hour
  • Kulkas 360 liter : @ 135 Watt x 24 jam x 1/3 (karena compressor kulkas tidak selalu hidup, umumnya mereka bekerja lebih sering apabila kulkas lebih sering dibuka pintu) = 1080 Watt hour
  • Komputer : @ 150 Watt x 6 jam = 900 Watt hour
  • Perangkat lainnya = 400 Watt hour
Total kebutuhan daya =  3480 Watt hour
Jumlah solar cells panel yang dibutuhkan, satu panel kita hitung 100 Watt (perhitungan adalah 5 jam maksimum tenaga surya):
Kebutuhan solar cells panel : (3480 / 100 / 5)  = 7 panel surya.
Jumlah kebutuhan baterai 12 Volt dengan masing-masing 100 Ah:
Kebutuhan baterai minimun (batere hanya digunakan 50% untuk pemenuhan kebutuhan listrik), dengan demikian kebutuhan daya kita kalikan 2 x lipat : 3480 x 2 = 6960 Watt hour = 6960 / 12 Volt / 100 Amp = 6 batere 100 Ah.
Kebutuhan baterai (dengan pertimbangan dapat melayani kebutuhan 3 hari tanpa sinar matahari) : 3480 x 3 x 2 = 20880 Watt hour =20880 / 12 Volt / 100 Amp = 17 batere 100 Ah.